航空或航天平臺獲取的遙感數(shù)據(jù)在各種空間、光譜和時間分辨率上提供了地表覆蓋信息,成為地理空間信息的主要來源。這些多源遙感數(shù)據(jù)提供的信息具有冗余性、互補性和合作性,將多源數(shù)據(jù)的互補信息加以利用,獲得對地物正確的解譯是非常重要的。多源遙感數(shù)據(jù)融合則是綜合多種傳感器遙感信息的最有效途徑之一,被認為是現(xiàn)代多源影像處理和分析中非常重要的一步。
目前許多學者針對激光點云數(shù)據(jù)和影像的融合分類進行了研究。已有研究表明利用激光點云數(shù)據(jù)和光學影像進行融合分類,得到的分類精度比單獨利用激光點云數(shù)據(jù)或光學影像進行分類的分類精度提高8%~16%。
因此聯(lián)合激光點云和光學影像進行分類,能夠改善分類效果,提高分類精度。
本文采用面向?qū)ο蠓诸惙椒?,?a href='http://llhai8888.com.cn/article/1202.html' target='_blank' title='激光點云'>激光點云數(shù)據(jù)引入影像分割、特征提取和影像分類3個環(huán)節(jié)中,改善影像分割效果和最終的分類結(jié)果,達到激光點云與航空影像融合分類的目的。
分水嶺分割算法是一個模擬浸水的過程,分水嶺分割算法中用到的是影像的梯度,計算Sobel 梯度影像并利用形態(tài)學所得的標記圖像對梯度影像進行重建,將局部無關的極小值點去除消除過分割現(xiàn)象。
通常的算法中梯度為原始影像的灰度梯度計算獲得,但是這樣可能會造成一些局部灰度差異不大的地物,如水泥建筑和道路、綠色植被和草地等被分割到一塊分割單元中,導致最終的分類結(jié)果不準確。
因此,本文將 LiDAR數(shù)據(jù)計算得到的 nDSM 投影到規(guī)則格網(wǎng)中生成圖像,計算高程梯度,然后利用標記圖像進行高程梯度圖像的重建,再進行分水嶺分割計算,將分割后結(jié)果與灰度影像分割結(jié)果進行疊加,以達到改善分割效果的目的。
將激光點云數(shù)據(jù)的特征引入到航空影像分類的規(guī)則集中,主要有利用 nDSM 得到的高程信息及其統(tǒng)計值,激光點云自身獲得的反射強度信息及統(tǒng)計值。此外,光學影像的特征主要有直接光譜特征,如波段灰度均值、方差等; 間接光譜特征,如 NDVI 指數(shù)及幾何特征、形狀緊致性等。
綜合考慮了光學影像特征和激光點云特征,建立如下分類規(guī)則: 首先利用高程將地物分為地面和非地面地物,然后利用 NDVI 指數(shù)、強度、緊致性和強度標準差依次將地面地物分為草地、道路和裸地,利用 NDVI 指數(shù)、高程標準差和強度將非地面地物分為樹木和建筑。分類規(guī)則中的參數(shù)閾值都是通過樣本訓練和多次試驗得到的。
采用影像結(jié)合激光點云的改進分水嶺分割方法得到的分割結(jié)果在建筑物和陰影及樹木和陰影的地方要優(yōu)于僅采用影像進行分水嶺分割的結(jié)果。
下面從幾個定量指標比較兩種分割結(jié)果。
對于兩種分割結(jié)果,分別統(tǒng)計其所得的分割單元數(shù)、分割單元的同質(zhì)性指標、異質(zhì)性指標等。同質(zhì)性指標計算分割區(qū)域的標準差的加權(quán)平均值 U ,同質(zhì)性指標的值越小說明區(qū)域同質(zhì)性越高; 異質(zhì)性指標采用一個空間自相關指數(shù) V ( Moran 指數(shù)) 表示空間分割對象間的空間獨立程度,異質(zhì)性指標的值越小說明分割單元間越獨立。
從表中可以看出,本文采用的影像和激光點云結(jié)合的分水嶺分割方法所得的分割單元數(shù)雖然比采用影像的分水嶺分割方法所得的分割單元數(shù)多,但是同質(zhì)性和異質(zhì)性數(shù)值卻更小,說明激光點云可以改善影像的分割效果,得到單元內(nèi)更勻質(zhì)、單元間差異更大的結(jié)果。
比較可見光( RGB) 波段影像的分割結(jié)果和增加近紅外(NIR) 波段之后影像的分割結(jié)果可以看出,后者的分割單元數(shù)比前者增加了,但是前者的同質(zhì)性和異質(zhì)性結(jié)果要比后者好。從定量指標來看,RGB 影像和 LiDAR 點云結(jié)合的數(shù)據(jù)方式分割統(tǒng)計的同質(zhì)性和異質(zhì)性指標均為最好,這是因為地物在可見光波段的光譜特性差異比較明顯,特別是草地和植被、草地和裸地有明顯差別,但是在近紅外波段它們之間的差異較小,因此加入近紅外波段之后計算的整體異質(zhì)性比可見光波段的差。但是結(jié)合定性的目視效果,最終采用 RGB+NIR 四波段影像和 LiDAR 點云結(jié)合的數(shù)據(jù)方式進行分割。
影像分類結(jié)果
融合分類得到的結(jié)果,可以看到大部分地物都得到了正確的分類,特別是由于高大植被和建筑造成的陰影基本上沒有影響道路的分類,而草地中間的植被也被分類出來。為了進一步分析融合分類的分類結(jié)果,評價分類精度,本文利用融合分類影像的混淆矩陣計算了每一類別的用戶精度、制圖精度、總體精度,以及 Kappa 系數(shù)和條件 Kappa系數(shù)。
裸地的制圖精度、用戶精度和條件Kappa 系數(shù)最低。其制圖精度為 62. 5%,實為裸地的像元有 37.5%被分為草地或道路像元中; 用戶精度為 66.67%,分類得到的裸地像元中有 33.33%實為草地或道路,說明裸地的多分和漏分現(xiàn)象比較嚴重。這是因為影像上裸地像元的數(shù)量很少,部分像元容易與鄰近的草地或道路分割為一個單元,這樣會使得分割單元的緊致性或強度等統(tǒng)計值代表了幾種混合地物的特性,使得分類時裸地誤分為草地或
道路,導致精度降低。
從 3 個類別精度指標整體分析可知,道路、建筑和植被的精度較高,而草地的制圖精度較低,實際為草地的像元被分為道路或裸地像元,是因為分類所用的強度信息并不準確,沒有經(jīng)過輻射校正,所以得到的強度特征并不能完全反映該地物的激光反射特性,因此采用的閾值不能很好地區(qū)分兩類地物。但是草地與建筑、草地與植被之間的錯分情況很少,說明激光點云數(shù)據(jù)得到的高程信息能將地面地物與非地面地物較好地區(qū)分,參與到建筑和植被的分類中能夠起到有效作用。
本文將機載激光點云數(shù)據(jù)與航空影像進行了面向?qū)ο蟮娜诤戏诸悾饕窃诤娇沼跋竦姆炙畮X分割梯度計算中加入 LiDAR 高程信息,然后結(jié)合地物的光譜特征和激光點云提供的高程特征,對影像進行了分層分類。試驗表明,激光點云的高程信息能夠改善影像分割效果; 激光點云數(shù)據(jù)得到的高程信息能將地面地物與非地面地物較好地區(qū)分,對建筑和植被的分類起到了有效作用。
版權(quán)聲明:文章來源于網(wǎng)絡,登載此文出于傳遞更多信息之目的,版權(quán)歸原作者及刊載媒體所有,如本文中圖片或文字侵犯您的權(quán)益,請聯(lián)系我們。
猜你喜歡:
機載LiDAR激光點云數(shù)據(jù)制作高精度DEM的方法
近日,湖北省經(jīng)信廳發(fā)布《2022年度湖北省創(chuàng)新產(chǎn)品應用示范推薦目錄》(以下簡稱《目錄》),飛燕遙感AIMS多模態(tài)航攝儀成功入選。
如何高效、準確地獲得數(shù)據(jù)、建立模型,成為當前普遍關注的焦點。 作為近年來出現(xiàn)的新型...
機載LiDAR技術(shù)是20世紀80年代中期逐漸發(fā)展起來的一項高新技術(shù),與傳統(tǒng)航空攝影測量技術(shù)...
利用激光掃描儀獲取的點云數(shù)據(jù)構(gòu)建實體三維幾何模型時,針對不同的應用對象、不同點云數(shù)...
機載激光雷達(Light Detection And Ranging,LiDAR)集成了激光測系統(tǒng)、全球衛(wèi)星導航系...
機載激光雷達是導航系統(tǒng)、全球定位系統(tǒng)以及激光慣性3種技術(shù)集于一身的空間測量系統(tǒng)。比...
電話:025-83216189
郵箱:frank.zhao@feiyantech.com
地址:江蘇省南京市玄武區(qū)紅山街道領智路56號星河World產(chǎn)業(yè)園3號樓北8樓
微信公眾號
總經(jīng)理微信
版權(quán)所有:飛燕航空遙感技術(shù)有限公司 ? 2019 備案號:鄂ICP備19029994號-1 蘇ICP備20022669號-1 鄂公網(wǎng)安備:420106020021194號 簡體中文/English